
 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 710

 COMBINATION OF FIFO-LRU CACHE REPLACEMENT ALGORITHMS
ON PROXY SERVER TO IMPROVE SPEED OF RESPONSE TO

OBJECT REQUESTS FROM CLIENTS

Tanwir1, 2, Gamantyo Hendrantoro1 and Achmad Affandi1

1Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
2Department of Electrical Engineering, Universitas Sains dan Teknologi Jayapura, Jayapura, Indonesia

E-Mail: tanwir@ieee.org

ABSTRACT

In this paper, cache is the repository of browsing results located in cache disk. The size of cache repository and
the choice of cache replacement algorithm affect the speed of a system. Improper deletion of an object during cache
replacement may erase the most frequently used objects and cause misses during request. In this study, we propose a
method of throughput improvement by combining FIFO (First in First Out) and LRU (Least Recently Used) cache
replacement algorithms. The analysis was conducted to identify the effect of cache size on hit rate percentage, response
time, delay time, and throughput when the combined FIFO-LRU algorithm is applied. The finding indicates bandwidth
efficiency improvement compared to single algorithms, as showed by 73% throughput improvement on 200 MB cache.
The application of the combined algorithm also reduces bandwidth usage and delay time while minimizing miss rate and
increasing hit rate.

Keywords: cache size, throughput, FIFO, LRU, FIFO-LRU, miss, hit rate.

1. INTRODUCTION

In computer network, throughput is the measure
of data flow speed indicating the amount of actual
information flowing from one point to another within
certain period, expressed in bits per second (bps) [1], [2].
In the context discussed in this study, the data bits are
stored inside cache on proxy server [3]. Inside a terminal
accessing the internet, browsers such as Internet Explorer,
Firefox, and Opera store web documents in forms of
HTML files, images, and video [4] and audio streaming of
the visited webpages using caching technology. The
application of caching technology aims to minimize
bandwidth usage [5] [6] and proxy server load so that the
browsers can download the object faster when revisiting
the webpages in the future. Caching also helps download
multiple objects by directly copying the objects from
directories where the cached files are being stored [7] [8].
To clarify, we need to differentiate disk cache from
memory cache. Disk cache is the repository of caches
located in proxy server used to store the requested objects
while memory cache is located between registers and main
memory inside the CPU. This study will focus on disk
cache.

The function of cache replacement algorithm is to
delete the stored objects in the cache based on specific
criteria. Cache replacement algorithm does affect the
speed of a system because it may replace/delete the objects
that are commonly used that result in "miss"during
request. There are several cache replacement algorithms
with their own advantages and disadvantages [9]. Least
Recently Used (LRU) algorithm replaces the least
accessed object without any references, while First in First
out (FIFO) algorithm replaces the earliest stored object
earliest. The advantage of LRU lies in its ability to replace
the least accessed objects without considering when the
object is stored in the disk cache for the first time.

Meanwhile, the advantage of FIFO algorithm is its ability
to replace the oldest stored objects with the new ones
without considering when the last time the objects being
accessed.

“Hit” refers to a condition when a system finds
and displays the results of requested objects in a cache
[10] [11],while a condition when the system fails to find
the requested objects is called “miss” [12] [13] [14]. The
probability (commonly expressed in percentage) of finding
the requested object by a system is called hit rate, while
the percentage of system failure in finding the requested
object is called miss rate [15] [16]. The configuration of
objects on cache replacement depends on the management
of the applied algorithm. In request using a single LRU or
FIFO algorithm, an object (or several objects) may be
deleted during cache replacement. For example, in FIFO
algorithm, the oldest saved object will be deleted earliest
and the objects that may be still used are deleted, causing
miss and delay. In this condition, LRU algorithm seems to
be able to maximize hit rate. However, the advantage of
FIFO algorithm lies on its cache replacement efficiency
because of its queue system according to the sequence of
stored object. Unlike in LRU algorithm [17], stack rarely
occurs with FIFO algorithm. FIFO algorithm is static and
easily combined with other algorithm. Therefore, by
combining FIFO algorithm and LRU algorithm, we expect
the combination of their respective advantages, resulting
in maximum hit rate, minimum miss rate, and efficient
cache usage.

Hence, the contribution of this study is the
evaluation of the combination of the two cache
replacement algorithms to minimize missrate. Specifically,
we suggest the use of FIFO-LRU combined algorithm to
optimize the advantages of each algorithm. The result of
evaluation indicates that the combined FIFO-LRU

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 711

algorithm is able to increase the throughput compared to
single algorithm.

Section II below discusses types of cache
replacement algorithms individually, including the single
and the combined algorithms. In Section III, we explain
the experiments aimed to evaluate the performance of each
algorithm during request. Finally, in Section IV we present
the conclusion of this study.

2. CACHE REPLACEMENT ALGORITHMS

A computer system consists of CPU, RAM,
HDD, and others. Memory cache is a small-sized high-
speed memory located in the CPU used to store the copies
of objects and instructions accessed by the CPU. Memory
cache also functions to bridge the difference between CPU
speed and main memory. However, this study focuses on
disk cache located in proxy server [18] (as illustrated in
Figure-1 below). The main function of disk cache located
in proxy server is to store the objects in the internet
accessed by the users. Therefore if a user request internet
service containing the objects accessed or requested
previously (i.e. the objects exist in the cache) the proxy
service will directly find and display the objects to the user
without re-requesting the objects to the internet server.

Figure-1. Illustration of a network with clients accessing
the Internet using Proxy Server.

The basic working principle of a cache is

determining whether a request on certain objects has been
previously made. In general, this process conducted by
matching a new request to the existing similar queries. If a
similar query exists or has been made before, a cache hit
occurs and the system finds and displays the results of
searching to the user. On the other hands, if the similar
query does not exist or never made, a cache miss occurs
and the system requests the results to internet server. In the
following sub-sections, we discuss single FIFO and LRU
algorithms and the new replacement algorithm combining

both FIFO and LRU as the contribution of this study. The
pseudo-codes for the algoritms are given for a scenario
with requests coming from three laptops as the objects of
this study, defined respectively in the forms of Xn, Yn,
and Zn.

a) Least Recently Used (LRU) algorithm: Least
Recently Used (LRU) algorithm works by deleting the
objects that are not used recently. The idea is that the
request on the objects that are not recently used are least
possible so that other newer objects that have higher
possibilities to be requested can use the space. LRU
algorithm implements counter logical clock and stack
logical clock. In counter logical clock, every object has
initial score 0 (zero). Every time an object is being
accessed, the score increases and the system will replace
the object with the lowest score. Meanwhile, in stack
logical clock, the recently accessed objects are put on the
top of the stack and the most bottom object will be
replaced. In Table-1 presenting the pseudo-code of LRU
algorithm, the implementation of counter and stack logical
clocks were accomplished during the evaluation of disk
cache expiry.

Table-1. LRU Algorithm Pseudo-code.

b) First in First out (FIFO) algorithm: FIFO
algorithm replaces the oldest object stored in cache. The
algorithm assumes that the oldest objects will not be
requested anymore so that the objects may be replaced
with the new ones. The disadvantage of this algorithm is
that it deletes the objects that are considered as expired
although the objects might still be actively used. FIFO
applies logics that the first stored objects will be deleted
first, ass implemented by the pseudo-code in Table-2.

Table-2. FIFO algorithm pseudo-code.

c) FIFO-LRU combined algorithm: The work
mechanism of a cache is to determine whether requested
objects exist in the cache or not. When a requested object
exists, a cache hit occurs. On the other hand, if the

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 712

requested object does not exist, a cache miss occurs and
the system will search for the requested objects in the
network. The combination of FIFO and LRU algorithms is
expected to improve the efficiency of storing and
requesting objects on the cache because the algorithm does
not delete the expired objects that may be actively used in
the future.

Table-3. Combined LRU-FIFO algorithm pseudo-code.

In FIFO-LRU pseudo-code presented in Table 3
above, CacheSize, MaxCount, and MaxTime serve as
parameters of the algorithm. By combining FIFO and LRU
algorithms, the often requested objects will not be deleted
although in terms of cache occupation time the objects
should have been expired. On the other hand, the
combined algorithm is expected to be able to increase the
efficiency of cache usage

Cache functions as temporary storage. When a
request on certain object occurs, the system will search the
object in cache. If the system cannot find the requested
object in cache, the processor continues searching in RAM
with slower speed. A disk cache provides the data required
by the processor and the effect of slow-speed RAM
performance can be minimized. Through this mechanism,
bandwidth increases and the processor work more
efficiently. Higher capacity disk cache may improve
overall computer performance.

3. EVALUATION

The performances of the observed algorithms are
measured according to several criteria, namely hit rate,
response time, delay time, and throughput. Hit ratio is
measured through the ratio between the number of
requests on certain objects accepted on cache and the
number of objects sent back by the client to the cache.
Response time refers to time required by the client to
request a certain object (whether the object exists in the
cache or not) until the client receives responses related to
the request. Delay time is defined as total time required
finding an object in the disk cache, starting from
requesting the object until the search finishes (the result is
either a hit or a miss). Throughput is measured as the ratio
of hitobjects expressed in bits to the observation time.

The evaluation on hit rate and response time as
the performance parameters of FIFO algorithm, LRU
algorithm, and the combined FIFO-LRU algorithm was
conducted by sending various different objects to the
request system. As described in Figure-2 below, several
requests on certain objects were made during evaluation.
Cache miss occurred when the cache could not complete

the request while cache hit occurred when the cache
completed the request. We also carried out cache
validation, a process assuring that the system does not
provide expired data to the client. Proxy server validation
runs according to the mechanism that it will only send
back the copy of objects that have not expired to the client.

Figure-2. Configuration of network system used
during evaluation.

During the experiments requests on different

objects Xn, Yn, and Zn were made from three devices
(laptops) accessing the internet simultaneously. The
combined FIFO-LRU cache replacement algorithm
indicates good and fast response that increases hit ratio
percentage on cache size. The experimental results are
given in the forms of graphics describing hit rate
percentage on cache size (Figure-3a), response time on
cache size (Figure-3b), delay time on cache size (Figure-
3c), and throughput on cache size (Figure-3d).

Figure-3(a).Hit rate percentage vs cache size.

0

20

40

60

80

100

0 100 200 300

P
ro
se
n
ta
se
 H
it
 R
at
e
(%

)

Cache Size (MB)

FIFO

LRU

FIFO‐LRU

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 713

Figure-3(b). Response time vs cache size.

Figure-3(c).Delay time vs cache size.

Figure-3(d). Throughput vs cache size.

Figure 3(a) above indicates that hit rate increases
with the increasing cache size. Hit rate percentage
increases with the increasing cache size up to 100 MB. Yet
after cache size reaches 100 MB, hit rate percentage tends
to be constant. The increasing number of requests
executed by the cache (hit) is indicated by the increasing

percentage of object taken from the cache relative to the
number of request sent by the cache to the client. This
condition appears because a number of objects saved in
the cache applying single FIFO or LRU algorithm were
deleted, whereas in combined FIFO-LRU algorithm there
is no object deletion if there are many requests on them.

For example, the result of initial measurement of
request on certain object with cache size 50 MB the
percentage of hit rate on total request was 38% using FIFO
algorithm and 45% on LRU algorithm. Meanwhile,
implementation of FIFO-LRU algorithm provides the
highest hit rate percentage as much as 73% which
increases up to 85%.

Figure-3(b) shows that the response time
increases with the increasing cache size. The result of
initial analysis towards response time of the evaluated
algorithms on 50 MB cache size indicates that the
response times for FIFO, LRU, and combined FIFO-LRU
algorithms are 21, 19 and 10 milliseconds, respectively.
The response time of the algorithms also increases as the
cache size increases to 100 MB, in which the response
times of FIFO, LRU and FIFO-LRU algorithm are 32, 27,
and 11 milliseconds, respectively. Similarly for 250 MB
cache size, the response times are 78, 73, and 52
milliseconds. The explanation of this condition is that the
elapsed time for data query will be longer on larger cache
size.

Figure-3(c) depicts the delay time of each
algorithm in different cache sizes. In 50 MB cache size,
the delay times of FIFO, LRU and FIFO-LRU are 59; 53;
and 26 milliseconds, respectively. Also similarly for 150
MB cache size, the delay times are 42; 37; and 12
milliseconds, respectively. From these findings, there is a
phenomenon in which the increasing cache size reduces
miss rate, causing a decrease in delay time, which in turn
results in faster object finding.

The implementation of combined FIFO-LRU
algorithm significantly reduces delay time (as indicated on
Figure 3c above). As the cache size increases, it takes
longer to perform a request. After the request becomes
cache hit, the object will be stored in the disk cache
reducing the delay time of future requests on the same
object. When the disk cache repository is full, the FIFO-
LRU algorithm shall delete the objects according to
counter logical clock and stack logical clock on the queued
objects. The deletion significantly reduce delay time with
cache size.

Figure-3(d) shows that the throughput reached on
50 MB cache size is 20 Kbps by FIFO algorithm; 22 Kbps
by LRU; and 45 Kbps by FIFO-LRU. As the cache size
increases to 150 MB, the throughput of the algorithm also
improves. FIFO algorithm improves to 28 Kbps; LRU
improves to 32 Kbps; and the combined FIFO-LRU
improves to 54 Kbps. Throughput improvement increases
the possibility of finding the requested objects within the
cache and reduces access time to the server.

The comparison of the hit rate percentage,
response time, delay time, and throughput among the three
algorithms indicated that LRU algorithm always has a
slightly better performance than FIFO. This phenomenon

0

20

40

60

80

100

0 100 200 300

re
sp
o
n
se
 T
im

e
(m

s)

Cache Size (MB)

FIFO

LRU

FIFO‐LRU

0

10

20

30

40

50

60

70

0 200 400

D
e
la
y
Ti
m
e
(m

s)

Cache Size (MB)

FIFO

LRU

FIFO‐LRU

0

10

20

30

40

50

60

70

80

0 200 400

Th
ro
u
gh
p
u
t
(k
b
p
s)

Cache Size (MB)

FIFO

LRU

FIFO‐LRU

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 714

is consistent to the concept that LRU keeps the most
accessed objects within the cache, one condition that
cannot be done by FIFO algorithm on the expired objects.
However, the combination of FIFO and LRU algorithms
has significantly better performance on almost all criteria
compared to the single algorithms. For example for cache
size 100 MB, the response time of LRU is 4 milliseconds
faster than FIFO and 6 milliseconds faster for 200 MB
cache size. Meanwhile, the combined FIFO-LRU
algorithm response time is much faster than the single
algorithms. The combined FIFO-LRU algorithm is faster
than LRU algorithm by 15 milliseconds on 100 MB cache
size and by 20 milliseconds on 200 MB cache size.

The application of LRU algorithm, which is on
stack and counter logics, may cause skips when the objects
are replaced during cache replacement process that
increases delay time. On the other hand, the basic principle
of FIFO is the oldest input will be replaced earlier without
considering whether the objects are actively used or not on
request to the client server. If we combine LRU algorithm
with FIFO algorithm implementing queuing principle, the
objects that are originally skipped in the single algorithms
will follow queuing principle. By applying combined
FIFO-LRU algorithm, a number of hit requests for objects
readily saved in cache do not require further queries,
thereby reducing searching time and improving response
time.

The application of combined FIFO-LRU
relatively improves the throughput relative to LRU
algorithm by 85% on 100 MB cache size and by 73% on
200 MB cache size. Throughput improvement affects
bandwidth usage efficiency and reduces delay time to 27%
with respect to the LRU algorithm.

4. CONCLUSIONS

This paper has proposed the application of a
cache replacement algorithm that combines LRU and
FIFO single algorithms. The combination of FIFO and
LRU algorithms aims to combine the strengths of both
single algorithms so that the combination can improve
object access performance based on several criteria,
namely hit rate, response time, delay time, and throughput.

General results of experimental evaluation
indicate that the application of combined FIFO-LRU
algorithm brings relatively great improvement
performance, compared to single LRU algorithm. The hit
rate percentage of FIFO-LRU algorithm increases to 73%
for 200 MB cache size and increases to 85% on 100 MB
cache size. As the hit rate percentage improved, the
request speed increases and response time decreases. As a
result, the delay time also decreases, resulting in shorter
response time. As the hit rate increases, time required to
find an object during future requests will be shorter,
thereby causing the throughput to increase. Based on these
findings, the application of combined FIFO-LRU is
strongly recommended.

REFERENCES

[1] M. Ji, G. Caire and A. F. Molisch. 2015. The

Throughput-Outage Tradeoff of Wireless One-Hop
Caching Networks. IEEE Trans. Inf. Theory. 61(12):
6833-6859.

[2] H. Ajorloo and M. T. Manzuri-Shalmani. 2016.
Throughput Modeling of Distributed Reservation
Protocol. IEEE Trans. Mob. Comput. 15(2): 503-515.

[3] W. Ma and D. H. C. Du. 2004. Design a progressive
video caching policy for video proxy servers. IEEE
Trans. Multimed. 6(4): 599-610.

[4] W. Ma and D. H. C. Du. 2004. Design a progressive
video caching policy for video proxy servers. IEEE
Trans. Multimed. 6(4): 599-610.

[5] V. Pacifici, F. Lehrieder, and G. Dán. 2016. Cache
Bandwidth Allocation for P2P File-Sharing Systems
to Minimize Inter-ISP Traffic. IEEEACM Trans.
Netw. 24(1): 437-448.

[6] K. M. Wilson and K. Olukotun. 2001. High
bandwidth on-chip cache design. IEEE Trans.
Comput. 50(4): 292-307.

[7] Q. Zhang, Z. Xiang, W. Zhu, and L. Gao. 2004. Cost-
based cache replacement and server selection for
multimedia proxy across wireless Internet. IEEE
Trans. Multimed. 6(4): 587-598.

[8] Janaki K, Indhumathi K, Vijayakumar P, and Ashok
Kumar K. 2015. A novel approach for a high
performance lossless cache compression algorithm.
ARPN J Eng Appl Sci ARPN J. Eng. Appl. Sci. 10(7):
3178-3184.

[9] Tanwir, G. Hendrantoro, and A. Affandi. 2015. Early
result from adaptive combination of LRU, LFU and
FIFO to improve cache server performance in
telecommunication network.Presented at the
Intelligent Technology and Its Applications (ISITIA),
2015 International Seminar on. pp. 429-432.

[10] F. Hameed, L. Bauer, and J. Henkel. 2013.
Simultaneously optimizing DRAM cache hit latency
and miss rate via novel set mapping policies. in 2013
International Conference on Compilers, Architecture
and Synthesis for Embedded Systems (CASES). pp.
1-10.

[11] M. Akon, M. T. Islam, X. Shen, and A. Singh. 2010.
Hit Optimal Cache for Wireless Data Access. in 2010

 VOL. 12, NO. 3, FEBRUARY 2017 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2017 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 715

IEEE Global Telecommunications Conference
(GLOBECOM 2010). pp. 1-5.

[12] M. Hashemi, Khubaib, E. Ebrahimi, O. Mutlu, and Y.
N. Patt. 2016. Accelerating Dependent Cache Misses
with an Enhanced Memory Controller. in 2016
ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). pp. 444-455.

[13] V. Venkatesan, Y. C. Tay, Y. I. Zhang, and Q. Wei.
204. A 3-Level Cache Miss Model for a Nonvolatile
Extension to Transcendent Memory.Presented at the
Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference
on. pp. 218-225.

[14] J. van den Berg and D. Toswley. 1999. Properties of
the miss ratio for a2-level storage model with LRU or
FIFO replacement strategy and independent
references. IEEE Trans. Comput. 42(4): 508-512.

[15] Y. Zhong, S. G. Dropsho, X. Shen, A. Studer and C.
Ding. 2007. Miss Rate Prediction across Program
Inputs and Cache Configurations. IEEE Trans.
Comput. 56(3): 328-343.

[16] M. Lenjani and M. R. Hashemi. 2014. Tree-based
scheme for reducing shared cache miss rate
leveraging regional, statistical and temporal
similarities. IET Comput. Digit. Tech. 8(1): 30-48.

[17] S. Wan, Q. Cao, X. He, C. Xie and C. Wu. 2008. An
Adaptive Cache Management Using Dual LRU Stacks
to Improve Buffer Cache Performance.Presented at
the 2008 IEEE International Performance, Computing
and Communications Conference. pp. 43-50.

[18] J. Shim, P. Scheuermann, and R. Vingralek. 1999.
Proxy cache algorithms: design, implementation, and
performance. IEEE Trans. Knowl. Data Eng. 11(4):
549-562.

