
Early Result from Adaptive Combination of LRU,

LFU and FIFO to Improve Cache Server Performance

in Telecommunication Network

Tanwir, Gamantyo Hendrantoro, Achmad Affandi

Department of Electrical Engineering

Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia

tanwir10@mhs.ee.its.ac.id gamantyo@ee.its.ac.id affandi@ee.its.ac.id

Abstract— telecommunications system network server is a

multimedia storage medium, load server is storing data

transmission can be reduced with an additional caches servers

which store data while making it easier for clients to access

informations. The more clients to access information causing

increasing caches capacity is needed deletion of caches with using

a combination of algorithm LRU, LFU and FIFO Queue method,

in time of the initial data to be deleted (FIFO), the other

algorithm will detect if such data has the most references (LFU)

or LRU algorithm so that frequently accessed data to be stored is

cached it will reduce delay time, Throughput and Loss Browsing.

Keywords— Algorithms; LRU; LFU; FIFO; Cache Server

I. INTRODUCTION

The development of the telecommunications system

network where the number of internet users primarily

information technology today is increasing, this is caused by

the increasing number of people to send information through

the Internet, with a wide variety of information formats (text,

image and video). The number of such users are generally not

followed by the addition of appropriate bandwidth, often

resulting in problems in the delivery of data.

Cache Server is a place to store data temporarily. This

method is intended to improve the transfer of the data store that

never accessed the cache, so that when the data is accessed

form of the same data, then access can be done more quickly.

Cache memory is located between the main memory registers

and then processing the data is not directly refer to the main

memory.

Several research on the cache server that functions to

accelerate data access [1] on the computer where the cache

stores information that has been accessed by a buffer, when a

data is already stored in memory with the address. If the redial

data, the cache monitor will check back in a cache location so

as to accelerate the performance of memory and speed up

access to data on the computer. By evaluating the performance

of various system cache memory [2] [3] and [4] obtained the

development of cache memory to an XOR circuit [5] [6].

Computer technologies evolve with the introduction of

the multimedia processor with MMX. Processors with this

capability can improve the multimedia experience that MMX is

a forerunner of instruction SIMD (Single Instruction Multiple

Data) that since it was developed several processors ranging

Pentium, Pentium 2, Pentium 3, Pentium 4 processor

development [7], then the Pentium dual-core, dual core2 and

core i, with a capacity larger cache memory in the form of level

1 (L1), level 2 (L2) and level 3 (L3).

Special challenges in the development of cache memory

is relatively smaller capacity of main memory but has a

relatively higher rate than main memory. Until now, the cache

memory is divided into three levels, namely L1, L2 and L3 [8].

Cache memory has the highest access speed and price of the

most expensive [8]. Developing memory size ranging from 8

KB, 64 KB and 128 KB. Cache memory level 2 (L2) has a

larger capacity ranging from 256 KB to 2 MB. However, L2

cache memory has a lower speed than the L1 cache memory.

L2 cache memory is separated by the so-called external

processor cache.
In this research analyzed the increase in Internet access

causes the smaller bandwidth so that the cache server an
increase in the amount of data that is causing the delay time so
that the communication between client access servers are often
disconnected.

II. DESIGNING FOR PERFORMANCE

A. Size Cache

One solution to the problem of determining the amount of
cache proxy service requests from the client to adjust the
amount of cache servers are implemented in the form of
services as shown in Fig. 1.

Fig. 1. Basic Cahe Proxy

429

2015 International Seminar on Intelligent Technology and Its Applications

978-1-4799-7711-6/15/$31.00 © 2015 IEEE

1) Server Cache: First Client requested web objects to

the proxy, a proxy check the data, whether the client requested

web objects exist, continue to provide the requested object

proxy client.

2) Server Proxy: The first object of a web client sends a

request to the proxy and then check the data, if the client

requested web objects exist, if the object does not have the

proxy server forwards the request to the client. If the requested

object is no further client server sends to the client. The

mechanism of the proxy server performance [9] shown in

Fig. 2.

Fig. 2. Performance Mechanism Cahe Proxy

B. Mapping

Channel cache memory is less than the main memory
block, it is necessary algorithms for mapping main memory
blocks into the cache memory channel. The mapping algorithm
is divided into three methods, namely direct mapping,
associative mapping and Set Assosiative mapping.

1) Direct Mapping:

a) Each block in the main memory is mapped to

a particular line in the cache. i = j modulo C where i is the

line number in the cache that is used to put the main memory

block j.

b) If M = 64 and C = 4, then the mapping between the

line with the block to be as follows:

Line 0 can hold blocks 0, 4, 8, 12, ...

Line 1 can hold blocks 1, 5, 9, 13, ...

Line 2 can hold blocks 2, 6, 10, 14, ...

 Line 3 can hold blocks 3, 7, 11, 15, ..

c) In this method, the address in the main memory is

divided into 3 fields, namely:

• Tag identifier.

• Line number identifier

• Word identifier (offset)

d) Word identifier contains information about the

location of the word in other addressable unit in a particular

line in the cache.

e) Line identifier contains information about the number

of physical (not logical) line in the cache.

f) Tag identifier is stored in the cache along with the

block on the line:

• For each memory address made by the CPU, a

certain line that stores a copy of the address

specified, if the block where the location data is

copied from the main memory to cache.

• Tag is on the line will be checked to see whether

the block in question is on the line

2) Associative Mapping.

a) Allows block placed on any line that is not being

used

b) Expected to overcome the major drawbacks Direct

Mapping.

c) test each cache to find the desired block.:

• Checking every tag on line

• Very slow for large caches.

d) Line numbers become meaningless. Address of main

memory is divided into two fields, namely tags and word

offset.

e) Perform a search for all the tags to find the block.

f) The cache is divided into two parts:

• lines in the SRAM

• tag in associative memory

3) Set Associative Mapping.

a) A combination of Direct with Full Associative

Mapping.

b) Ividing the cache into a number of sets each have a

number line.

c) Each block can be placed in any line with the number

the set: number = j modulo v

d) If a the set can accommodate x line, it is called a

cache has a the set associative cache Xway.

e) Almost all of the cache that is used today by the

organization 2 or 4-way set associative mapping [10].

III. CACHE MEMORY SIMULATOR

Cache memory is a temporary data storage location.

Placement of cache memory is intended to reduce the gap

between processor speed and main memory. This method is

intended to improve the transfer of data to the data storage

ever accessed in the memory cache. To improve the

performance of cache memory, we need a change of algorithm

Least Recently Used (LRU) replace the oldest data block in

the cache memory and does not have a reference. Other

algorithms Least Frequently Used (LFU) change the page that

has the least reference and First In First Out (FIFO) replace

the initial block of data entry.

The shape of the telecommunications measurements

carried out as shown in Fig. 3. Flowchart that illustrates an

information system data access services on time to request, in

the form send requests implementation where the data will be

checked on the proxy cache if there is no data will be given

430

information to proxy if there is then the request will be

forwarded next web server request data will be stored back in

the proxy cache in the form of requests that have been served.

The length of the data can be stored depends on the algorithm

used replacement. It is very influential on time connectivity.
The working principle of LRU replacement algorithm, LFU

and FIFO queue using methods that at the time the initial data
entry cache deletion detection (FIFO), with a combination of
three algorithms so that initial data entry is not so removed for
work LFU principle which states that data has many references
will be maintained then the data is often used to make
browsing is not removed and LRU algorithm so that reduces
the delay time and throughput.

Fig. 3. Flowchart

Overall use of software performance benchmark tests to
measure the microprocessors used in client server relationship
as shown in Fig. 4.

Fig. 4. Measurement Data Processor

The measurement results of data specifications Intel Core i5
2450M processor L1 D cache 32 Kbytes, 32 Kbytes of L1 I,
256 Kbytes L2 and L3 3 Mbytes. For the measurement of
average Disk Speed Writing and Reading with the same data

input browsing is google.com, Scribd, email and linkedin as
shown in Fig. 5

Fig. 5. Process Request

Fig. 6a. Disk Speed Writing

Fig. 6b. Disk Speed Writing

Performance on a client-server system with the present
measurement results using a performance review software
writing Benchmark obtained average speed of 55.74 MB / sec
on Intel Core i5-2450M @ 2.5 GHz as shown in Fig. 6a, with a
combination of LRU algorithm , LFU and FIFO obtained
average speed Writing became 72.03 MB / sec as shown in
Fig. 6b.

Fig. 7a. Disk Speed Reading

431

Fig. 7b. Disk Speed Reading

While the Fig. 7a acquired measuring disk Speed Reading
Average of 77.66 MB/sec on Intel Core i5-2450M @ 2.5
GHz with a combination of algorithms LRU, LFU and FIFO
obtained Average Speed Reading becomes 78.25 MB/ sec as
shown in Fig. 7b.

IV. CONCLUSION

The more users on the network telecommunication system
Client - Server lead to increased data cache server then there is
delay time and bandwidth is smaller, with using combination
algorithm LRU, LFU and FIFO so that at the time of deletion
of caches done early detection of incoming data (FIFO) with
regard the number of reference data used in browsing so that
indirectly deleted (LFU), thereby reducing delay time,
throughput and loss browsing.

REFERENCES

[1] H. Sun, C. Liu, W. Xu, J. Zhao, N. Zheng, and T. Zhang, “Using

Magnetic RAM to Build Low-Power and Soft Error-Resilient L1
Cache,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 20, no. 1,
pp. 19–28, Jan. 2012.

[2] M. Soryani, M. Sharifi, and M. H. Rezvani, “Performance Evaluation of
Cache Memory Organizations in Embedded Systems,” in Fourth
International Conference on Information Technology, 2007. ITNG ’07,
2007, pp. 1045–1050.

[3] S. Laha, J. H. Patel, and R. K. Iyer, “Accurate low-cost methods for
performance evaluation of cache memory systems,” IEEE Trans.
Comput., vol. 37, no. 11, pp. 1325–1336, Nov. 1988.

[4] G. S. Sohi, “Cache memory organization to enhance the yield of high
performance VLSI processors,” IEEE Trans. Comput., vol. 38, no. 4, pp.
484–492, Apr. 1989.

[5] H. Vandierendonck, P. Manet, and J. Legat, “Application-Specific
Reconfigurable XOR-Indexing to Eliminate Cache Conflict Misses,” in
Design, Automation and Test in Europe, 2006. DATE ’06. Proceedings,
2006, vol. 1, pp. 1–6.

[6] A. K. Goksel, R. H. Krambeck, P. P. Thomas, M.-S. Tsay, C. Y. Chen,
D. G. Clemons, F. D. LaRocca, and L.-P. Mai, “A content addressable
memory management unit with on-chip data cache,” IEEE J. Solid-State
Circuits, vol. 24, no. 3, pp. 592–596, Jun. 1989.

[7] Z. Zhang, Z. Zhu, and X. Zhang, “Design and optimization of large size
and low overhead off-chip caches,” IEEE Trans. Comput., vol. 53, no. 7,
pp. 843–855, Jul. 2004.

[8] Y. Niranjan, S. Tiwari, and R. Gupta, “Average memory access time
reduction in multilevel cache of proxy server,” in Advance Computing
Conference (IACC), 2013 IEEE 3rd International, 2013, pp. 44–47.

[9] Y.-W. Horng, W.-J. Lin, and H. Mei, “Hybrid prefetching for WWW
proxy servers,” in 1998 International Conference on Parallel and
Distributed Systems, 1998. Proceedings, 1998, pp. 541–548.

[10] H. R. Zarandi and S. G. Miremadi, “Hierarchical multiple associative
mapping in cache memories,” in Engineering of Computer-Based
Systems, 2005. ECBS ’05. 12th IEEE International Conference and
Workshops on the, 2005, pp. 95–101

432

