Tournal of Engineering and Applied Sciences 12 (Special Tssue 10): 9013-9020, 2017

ISSN: 1816-949%
© Medwell Journals, 2017

Performance Improvement of Proxy Server Cache Replacement by
Combination FIFO-LRU-LFU Algorithms

! “Tanwir, 'Gamantyo Hendrantoro and 'Achmad Affandi
"Department of Electrical Engineering,
Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
“Department of Electrical Engineering,
Universitas Sains dan Teknologi Jayapura, Jayapura, Indonesia

Abstract: Cache herein refers to a storage for results of internet browsing located in cache disk. Size of cache
and choice of cache replacement algorithm influence the system speed and client access throughput. Arbitrary
deletion of objects during cache replacement can lead to loss of objects frequently used which result in a miss
when there 1s a new request. In order to inprove throughput an algorithm combining three cache replacement
algorithms, FIFO-LRU-LFU is proposed. The new algorithm combine constructively advantages of the three
different algorithms. Analysis has been conducted to understand the effect of cache size on hit rate percentage,
respeonse time, delay time and throughput when the FIFO-LRU-LFU algorithm 15 implemented. The results
indicate improvement of bandwidth efficiency in cache replacement process compared to either single algorithm
or double combination algorithms which reaches 87% of rate hit percentage. As a result, there is a decrease in
bandwidth use and delay time which results in increased hit rate. In addition, there is an increase of relative
throughput compared to double algorithm of approximately 95% when 100 MB cache 1s used and 83% with
200 MB cache. The increase of thus throughput mfluences the efficiency of bandwidth use and reduces delay
time to only 25.6% with 100 MB cache and 11.8% with 200 MB cache. This result is in favour of the adoption
of the FIFO-LRU-LFUJ for cache replacement algorithm.

Key words: Cache, cache replacement algorithm, hit rate, internet networking, proxy server, throughput

INTRODUCTION

Information technology grows rapidly in line with the
growth of computer networking technology, particularly
mtermnet. One of the mmportant elements in mternet access
1s proxy server, a server that can be configured for several
functions which include cache server and bandwidth
controller (Shim ef al., 1999). Cache in this case is
temporary storage for objects to accelerate object transfer
in the proxy server. With cache, every object request is
not directly served by accessing internet but imtially by
accessing buffer in the cache. When the object requested
is found here the response time of the request will be
faster and the use of channel bandwidth can be minimized
(Meira et al., 1998). As the cache size is limited, the use of
bandwidth 1s controlled by deleting cached object by
using cache replacement algorithmsn (Zhang et al., 2004).
The deleting process is done when the cache has been
full and a new saving entry is needed.

The storing process of objects at proxy cache is done
by saving objects have been accessed (Wang et al., 2004,
Chang et al., 2008). When users request objects that have

been accessed previously in the internet which has been
stored in the cache, the proxy server will directly provide
the objects from the cache without re-requesting from
server source. However, when the requested objects are
not found in the cache of proxy server, the proxy server
will forward the request to the source server in the
internet (Lim ef af., 2014, Vladimir et af., 2017). The proxy
server herein functions as cache storage for objects that
are possibly requested later by client computer to public
internet. Through HTTP mechanism, objects given by
proxy are always the newest object as the proxy server
always matches the existing objects in the cache with
objects in the source server. Meanwhile, the validity and
effectiveness of cache replacement algorithm is used to
analyse and compare work performance of proxy server
based on request hit, byte hit and response time (Lee and
Kim, 2010). Three algorithms which are frequently used in
cache replacement process are FIFO (First In First Out),
LRU (Least Recently Used) dan LFU (Least Frequently
Used). FIFO algorithm 1s the simplest one as it 1s similar to
unprioritised queue. Earlier incoming page will also come
out earlier. This algorithm uses stack data structure when

Corresponding Author: Tanwir, Department of Electrical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
9013

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

there is no empty page while page fault occurs, frame at
the lowest stack is chosen. Therefore, it could happen
that this algorithm moves pages frequently used. The
weakness of FIFO 1s that it does not perform well all of the
time. This is because there is a possibility that a page that
has been removed from memory is requested again
(Tacob et al., 2010, Lenjani and Hashemi, 2014).

LRU algorithm selects pages that have not been used
for longest time. The advantage of LRU is that it does not
experience Belady anomaly and only discharges objects
that have never been accessed for a long time without
considering when those objects came in the cache disk for
the first time (Stallings, 2000, Akon et al, 2010). The
implementation of LRU (Least Recently Used) is done by
using stack indicat ing the objects in the cache disk.
Every tume an object 1s accessed, 1t will be positioned at
the top of the cache disk. When an object at the lowest
part of the stack has passed the maximum time limit this
object will be replaced. Every time a new object is being
accessed, the object to be replaced 1s determined based
on its expiry time. For every appearance of anew object,
the algorithm conducts loop twice; firstly, it looks for the
oldest object and secondly, it replaces object, so that, it
needs a longer time in replacing object compared to FIFO
(First In First Out).

LFU algorithm replaces the least used pages. LFU
(Least Frequently Used) detects unused objects in a
certain peried of time with fetch count = 4. As such LFU
algorithm 13 simple and efficient, since, it does not
require many steps in selecting objects (Liu et al., 2007,
Aghaei and Zaman-Zadeh, 2016). The weakness, however
15 that the objects discarded due to least frequent use
might possibly be in active use.

In the previous research, combmation of FIFO
and LRU algorithms has been proposed to exploit
advantages of each algorithm. The combined algorithm 1s
subsequently compared to the sngle algorithms in terms
hit rate, response time and cache delay (Nakamura et al.,
2002; Anandharaj and Anitha, 2009). Tt was found that
using the combined algorithm bandwidth efficiency
mcreases 1n the cache replacement process compared to
single algorithm in which throughput in the server
network improves with cache size. The combined
algorithm also reduces the bandwidth use resulting in
reduction of delay time, smaller miss rate and higher hit
rate.

Literature review: Hendrantoro and Affandi (2013)
indicate that the combination of three algorithms LRU,
LFU and FTIFO at cache servers in telecommunication
networks promises improvement of work performance in
cache replacement in the internet and heavily influences

network bandwidth use and cache hit rate. From the earlier
findings, further study has been carried out by combining
three algorithms and evaluating the improvement of
researcher performance which 1s reported n this study.
Therefore, the original contribution of this research
includes the combination of three algorithms LRU, LFUJ
and FIFO and its performance evaluation which have
never been reported elsewhere. The evaluation shows
improvement in work performance of cache replacement at
proxy server compared to both single and double
combination algorithms (Tanwir et af., 2017). As aresult,
there 13 an improvement of throughput and bandwidth
efficiency as well as reduction of miss rate.

MATERIALS AND METHODS

Cache proxy plays an important role in improving
researcher performance of a computer network. Proxy
1s an aplication that serves as an intermediate between a
client and web server (J1 et al, 2015, Ajorloo and
Manzuri-Shalmani, 2016) as shown in Fig. 1. One of the
functions of a proxy is to store cache.

In LAN networking when a client accesses a web
URL and requests an object, the browser will send the
request to proxy server. However, if that object 1s not
available then the proxy server will directly forward the
request to the web server in order to accelerate browsing
process.

A computer system consists of CPUJ, RAM, HDD and
others in which cache memory is a small size high speed
memory in CPU used to store copies of objects or
wnstructions frequently accessed by CPU. Our research,
however, focuses on cache disk located at proxy server as
llustrated in Fig. 2. The basic fimetion of a cache disk at
proxy server is to store objects that have been accessed
through internet network. As such when a user requests
an internet service contaimng objects which have
previously been accessed or recuested, ie., have
supposedly been in the cache then the proxy server will
be able to provide them from the cache instantly to the
user without re-requesting from internet server.

Firewall

e

o
Server

Fig. 1: Client-server relationship

9014

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

Internet
-\ Proxy server
h ¥
D | -
Clients Vs Hub
/ ! \
4 N
g i Cache disk)
Modem

Fig. 2: Client-server relationship

Cache functions as temporary storage. When there is
an object request, the system will firstly search for it in the
cache. When the requested data 13 found the processor
will read it with a small delay. However, if the data 1s not
found, the processor will search for it in RAM which has
lower speed. A cache disk can provide data requested by
processor, so that, the impact of slow work of RAM can
be mitigated. In this manner, bandwidth efficiency will
increase and the processor will work more efficiently.
Furthermore, the cache disk with bigger capacity will also
increase overall computer researcher speed.

The research principle of a cache is basically to
determine whether or not an object has been requested
previously. In general, it is done by checking if the same
query has been made before. If the query has been done,
cache hit will occur and then the search result from the
cache will be returned to user. However, if the query has
never been made previously, cache miss will occur and
then searching will proceed in the network.

Algorithms and evaluation methods: This study describes
implementation of cache replacement algorithms in the
form of pseudo-codes and performance evaluation
method using an experimental network with 3 clients.

FIFO algorithm: FTFO algorithm performs replacement of
objects that have existed for a long time in the cache. The
oldest objects are assumed not to be accessed anymore
and therefore will be replaced by the new ones. The
weakness is that the algorithm will discard objects that
have expired although they might be still actively used.
FIFO applies a logic principle in which earlier incoming
object will come out earlier too which 1s implemented in
the pseudo-code in Algorithm 1 through the condition
check “cache disk First In™.

Algorithm 1; Pseudo code of FIFO algorithm:
Read Xn; Yn; Zn
If (cache disk First in) then,
Print “cache disk
Tf MNew Object) then,
Print “cache disk™
Else
Print ““cache disk FIFO™
End If

LRU algorithm: LRU algorithm researchers by removing
objects that have never been used for a long time. The
idea is the objects that have long been unused have small
posibility to be requested again, so that, their place can be
used by new objects which are more probably used in the
future. LRU algornithm mmplements clock logic counter and
stack. At counter, every object has an initial value of zero.
When an object is accessed the clock for that object will
mcrease and object with smallest clock value 1s replaced.
With regards to the stack, on the other hand, every time
an object 1s accessed this object will be positioned at the
top of the stack. The lowest object of the stack will be
replaced. In the pseudo-code of LRI as illustrated in
Algorithm 2, the implementation of clock logic counter
and stack is done in the checking stage of “cache disk
Expires”.

Algorithm 2; Pseudo code of LRU algorithm:
Read Xn; Yn; Zn
Tf (cache disk Expires) then,
Print “cache disk
If (New Object) then,
Print “cache disk”
Else
Print “cache disk LRU”
EndIf

LFU algorithm: LFU algorithm conducts replacement of
objects in the cache which are the most seldom used.
These objects are considered not to be used anymore and
replaced with newer objects. The weakness of thus
algorithm 1s that these discarded objects might still be
actively used. LRU applies a logical principle to replace
objects which are most rarely used which is implemented
i the pseudo-code 1n Algorithm 3 with condition check
“cache disk Frequently™ .

Algorithm 3; Pseudo code of LFU algorithm:
Read Xn; Yn; Zn
If (cache disk Frequently) then,
Print **cache disk
Tt (New Object) then,
Print “cache disk™
Else
Print “cache disk LFU”
EndIf

Combination of FIFO-LRU algorithm: Cache has
mechanism to determine whether a request for an object
has been made previously. If it has ben made before, it
means the requested object is stored and the cache and
cache hit happens, otherwise cache miss hapens and the
system must continue the search i the network. The
combined algorithm FIFO-LRU does not discard objects

9015

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

although they are expired. On the contrary, these object
will be queued for use. When there is a new object that
needs to be stored 1 cache, the algorithm will detect the
queued, expired objects. The pseudo-code 1s 1llustrated in
Algorithm 4.

Algorithm 4; Pseudo code for combination FIFO-LRU:

Read Xn; Yn; Zn

Tt (disk cache filll: cacheSize) then,
Print “cache disk

Tt (counter=MaxCount; expires=MaxTime) then,
Print “cache disk”

Else

Print “cache disk FIFO-LRU”

End If

Combination of FIFO-LFU algorithm: The combined
FIFO-LFU cache replacement algorithm has similar
principle to FIFO-LRU, except that it 1s fetch count that 1s
used for checking, mstead of expiry time as n FIFO-LRU.
This is illustrated by pseudo-code in Algorithm 5. Objects
that have smallest fetch count in the cache will be placed
back in queue and not discarded directly.

Algorithm 5; Pseudo code for combination FIFO-LFU:

Read Xn; Yn; Zn

If (disk cache full>cacheSize) then,
Print “cache disk

If (counter=MaxCount; fetch count>MaxTime) then,
Print “cache disk™

Else

Print “cache disk FIFQ-LFUI*

End If

Combination of LRU-LFU algorithm: In the combined
LRU-LFU algorithm, the expired objects are evaluated
again based on fetch count as illustrated by pseudo-code
i Algorithm 6.

Algorithm 6; Pseudo code for combination LRU-LFU:
Read Xn; Yn; Zn
If (disk cache full>cacheSize) then,
Print “cache disk
If ¢fetch count>expires) then,
Print “cache disk™
Else
Print “cache disk LRU-LFU”
End If

If the objects are not accessed anymore, deletion or
replacement of the objects 1s carried out.

Combination of FIFO-LRU-LFU algorithm: Pseudo-code
for the combined FIFO-LRU-LFU algorithm is given in
Algorithm 7. The algorithm replace an object that
fulfills three criteria: it has been stored for the
minimum of 5 days, its fetch count is 10 or more and
it is the oldest incoming object. Accordingly, in the

pseudo-code, cache replacement is done by examining
three conditions, namely: fetch count>max count;
expires >max time, max count>max time.

Algorithm 7; Pseudo code for combination FIFO-LRU-

LFU:
Read Xn; Yn; Zn
T (disk cache fi1ll: cacheSize) then,
Print “cache disk
If (fetchcount= MaxCount; expires>MaxTime;
MaxCount=MaxTime) then,
Print “cache disk™
Else
Print “cache disk FIFO-LRU-LFU”
End If

For all of the above algorithms, cache size, max count,
dan max time are the parameters. By combining algorithms,
the deletion of an object 1s based on more than one
criteria corresponding to the above three parameters. The
performance test and measurement of all algorithms 1s
done by realizing a system consisting of an ADSL modem
comected to the mternet, a server, a switch and three
computers comected to the switch as illustrated in
Fig. 3.

In the examination, requested objects from the
three computers are defined as Xn, Yn dn Zn for
each algorithm. After measurement system has been
installed, different algorithms as well as data input are
synchronized. After that, measurement of four parameters,
1.e., hit rate, response tume, throughput and delay time 1s
made.

Measurement was made separately for different types
of algorithm, each time lasting for 2 months: the single
algorithms from April-Tune 2015, continued with the
double algorithms from July to August 2015 and the
combination of three algorithms, FIFO-LRU-LFU from
October-December, 2015. During the measurement of
performance of FIFO-LRU-LFU algorithm, the number of
clients decreased due to coincidence with school holiday

=i

192.168.0.257 \

\ Server
; l \ 192.168.0.233 192.168.0.234
——
192.168.0.238 /" Switch
./'/
Va ./
| I' : 74 /
b £
192.168.0.234

Fig. 3: Networking
evaluation

system configuration wused for

9016

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

and therefore, additional measurement was made from
February-March, 2016. One day’s measurement was taken
from 5:00 p.m. 04:00 a.m. the next morning which yielded
15 records of cache entry per day. Subsequently, the most
busy period was chosen, i.e., the period of time during
which many clients were active.

Hit rate, response time, delay time and throughput
were measured for all algorithms. Hit rate was measured
by calculating the ratio between the number of object
requests received and the number of objects sent by
clients to cache. Response time is the period starting from
a client sending a request for an object, regardless of its
availability in the cache, until the client obtains the
respeonse for the request. Delay time 1s defined as total
time of the process of searching object in the cache,
calculated from the moment of object request until the
search ends with either hit or miss. Throughput was
measured as ratio of the number of objects given in bits
experiencing hit to observation time.

In the experiment, requests were done through three
laptops that were accessing internet at the same time for
various objects Xn, Yn dan Zn. For that purpose, an open
source software was installed at the server, client and
firewall while the network was configured in order to
enable.

The client computer to access applications in the
server computer. The experiment reveals that the
more clients accessing applications in the server
simultaneocusly, the lower the execution speed.

1207 @)

:
*L

\

Prosentase hit rate (%)
& 8
}ﬁ

80+

- FIFQ —»— FIFQ-LFUJ

Hit rate and response time as the performance
indicators of the single algorithms, LRU, LFU dan FIFO as
well as the double and the combination of three
algorithms were evaluated by sending various previously
specified objects to system request by using open source
software Synchronization. The objects were then stored
in the cache as illustrated in Fig. 3. Tn addition, cache
object validation was done to ensure that expired data
was not supplied to a client. The validation was done at
the proxy server where it is checked that only if the copy
of the object to be supplied to the client is still valid then
the object is sent to the client.

RESULTS AND DISCUSSION

The combined FIFO-LRU-LFUJ algorithm indicates
good and fast response, so that, hit rate percentage
increases with cache size. The graphs of hit rate, delay
time and througput with respect to cache size are
illustrated in Fig. 4.

Figure 4a shows that hit rate increases with cache
size up to cache size of about 100 MB, after which the
value of hit rate is nearly constant. This can be explained
as follows. The increase of number of requests that can be
served well by the cache (i.e., hits) indicates the increase
of percentage of object that is taken from the cache with
respect to the total requests sent by clients to the cache.
The highest hit rate is shown by FIFO-LRU-LFU algorithm
which indicates the improvement of performance because

9071t

- LRU -e- LRU-LFU
201 - LFU —— FIFO-LRU-LFU 10-
=~ FIFO-LRU
0 T T L] T T 1 3 T T L] L] L] 1
70 = (© 120+ @
60 -

Delay time {msec)
g 33

40+
20 -
107 207
0 T T T T L] 1 v T T T T T 1
1] 50 100 150 200 250 300 0 50 100 150 200 250 300
Cache size (MB) Cache gize (MB)

Fig. 4 Performance of cache replacement algorithms: a) Prosentase hit rate; b) Response time; ¢) Delay time and d)

Throughput

9017

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

a number of objects are not immediately deleted but
instead are put back in queue which can increase hit
opporturity. For cache size in the range of 100-250 MB,
hit rate achieved with FIFO-LRU-LFU can reach
96%.

With regard to hit rate, based on measurement
of object requests with cache size of 50 MB for
FIFO-LRU-LFU algorithm, the percentage ratio of cache
hit to the number of requests is 38% with FIFO, 45% with
LRU and 47% with LFU. Onthe other hand, the FIFO-LRU
yields hit rate percentage of 74% which mcreases up to
87% when the FIFO-LRU-LFU algorithm is used. As
shown in Fig. 4b response time increases with cache size.
This phenomenon occurs because as the cache size
becomes larger, longer time 1s needed to search requested
objects. Data analysis for 50 MB cache size gives
response time of 21 msec with FIFO, 19 msec with LRU
and 22 msec with LFU. Further, by implementing
combination of two algorithms, the response time
achieved with FIFO-LRU 1s 9, 11 msec with FIFO-LFU and
13 msec with LRU-LFU. With FIFO-LRU-LFU algorithm,
the response time is only 4 msec, much lower than those
of other algorithms.

Figure 4¢ mdicates that with 50 MB cache, delay time
caused by the we of any of the three single algorithms
ranges from 54-59 msec. Tt reduces to 26-32 msec when
any of the double-combined algorithms 1s used and goes
further down to 23 msec when the FIFO-LRU-LFU 1s
employed. Likewise with 150 MB cache, the delay time is
in the range of 37-43 msec for single algorithms, 12-16 for
the double-combined algorithms and only 7 msec for
FIFO-LRU-LFU. Thus, there 1s a phenomenon that the
bigger the cache size, the smaller the miss rate which
results in faster object search and reduces the delay
time.

The above results for response time and delay time
seem to be contradictory, particularly on their variation
with cache size. The following discussion explains why
the two results differ. Delay time decreases when
combination of FIFO-LRU-LFU is implemented as
indicated in Fig. 4c. With bigger cache, longer time is
needed to request objects. When an object request
experiences a hit, the object 1s stored back m the cache
disk. This reduces time delay when request of the same
object is repeated. When the cache becomes full and
combined FIFQO-LRU-LFU is used in deletion of objects
based on clock logic counter and stack of queued object,
the delay time decreases even further with cache size.

Figure 4d indicates that in terms of throughput,
FIFO-LRU-LFU algorithm is also better than other
algorithms. With 50 MB cache, the throughput with
single algorithm reaches 20-23 kbps. With combination of

two algorithms there is an increase of throughput up
to 40-45 kbps. Futher with combination of three
algorithms of FIFO-LRU-LFU the throughput 1s 66 kbps.
With 150 MB cache, throughput mcreases with single
algorithm to 28-32 kbps and with double algorithms up to
50-56 kbps. Throughput increases much greater with
combination algorithm of FIFO-LRU-LFU which reaches
85 kbps because the greater chance for finding requested
objects in cache will reduce access time to server that in
turn increases throughput.

By comparing all the algorithms with respect to hat
rate, response time, delay time and throughput, it 1s clear
that LR1T performs better than FIFO. For example, LRU
yields response time 4 msec faster than FIFO for 100 MB
cache and approximately 7 msec faster for 200 MB cache.
This 1s because LRU maintains objects which are still
often accessed stored in the cache, a thing that does not
occur with FIFO when such objects have expired.
Algorithm obtamned from the combimation of two single
algorithms performs better than any of the single
algorithm. FIFO-LRU is the best algorithm among other
double combinations which achieves response time of
12 and 26 msec, respectively for cache size of 100 and
200 MB. With FIFO-LRU-LFU algorithm, there 1s much
greater increase in performance of all criteria compared to
either single or double algorithm. This is demonstrated by
the delay time for FIFO-LRU-LFU being approximately
20 and 23 msec less than LRU for 100 and 200 MB cache,
respectively and 4 and 8 msec less than FIFO-LRU for the
same cache sizes.

When LRU 1s used which 1s based on stack and logic
counter, leaps often happen during the process of object
replacement in cache replacement which results in
increase of delay. On the other hand when the basic
principle of FIFO is concerned, earlier incoming objects
will also come out earlier without considering whether
these objects are still often requested. Therefore, when
LRU is combined with FIFO, objects that have so far often
experienced leap during the replacement will follow the
queuing principle. When the FIFO-LRU-LFU algorithm 1s
adopted, a number of hit requests for objects that have
been stored in the cache disk does not require object
search anymore. This causes object searching time to
decrease which eventually results in better response
time.

When the FIFO-LRU-LFU algorithm is used there is
an increase of throughput of 95% relative to LRU with
100 MB cache and about 83% with 200 MB cache. The
incease of throughput influences the bandwidth use
efficiency and reduces delay time up to 25.6 and 11.8%
with 100 and 200 MB cache, respectively, compared to
delay time of LRU single algorithm.

9018

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

CONCLUSION

The reported research proposes cache replacement
algorithm which 1s the combination of three single
algorithms LRU, LFU and FIFQ. This combination is
meant to blend comstructively advantages of the
different algorithms in order to improve performance of
object access as measured by such indicators as Iut rate,
response time, delay time and throughput.

The result of experimental evaluation generally
show that there is a relatively great increase in the
object access performance as the result of
combination of FIFO-LRU-LFU algorithm. When
compared to FIFO-LRU algorithm, the percentage of
hit rate from a number of object requests that can be
supplied by cache using FIFO-LRU-LFU increases up
to 83% when 200 MB cache is used and 95% with 100 MB
cache. The increase of hit rate percentage increases
request service speed which results in smaller response
time. As a result, the delay time reduces with cache size
which causes object searching time is shorter.

RECOMMENDATIONS

In addition with the increase of hit rate percentage,
the time needed for searching objects requested
repeatedly is smaller which eventually increases
throughput. Based on the above observation, the
combination of FIFO-LRU-LFUJ algorithm is strongly
recommended to improve the throughput of client access.

REFERENCES

Aghaei, B. and N. Zaman-Zadeh, 2016. Evaluations of
cache coherence protocols in terms of power and
latency in multiprocessors. Asian J. Inf. Technol., 15
5181-518s.

Ajorloo, H. and M.T. Manzuri-Shalmani, 2016.
Throughput modeling of distributed reservation
protocol. IEEE. Trans. Mob. Comput., 15: 503-515.

Akon, M., M.T. Tslam, X. Shen and A. Singh, 2010. Hit
optimal cache for wireless data access. Proceedings
of the Conference on Global Telecommunications
{(GLOBECOM 2010), December 6-10, 2010, IEEE,
Miami, Florida, USA. isBN:978-1-4244-5636-9, pp: 1-5.

Anandhara), G. and R. Anitha, 2009. An improved
architecture for complete cache management in
mobile computing environments. Int. J. Soft Comput.,
4:142-147.

Chang, RI., Y.L. Chen and Y.Y. Wu, 2008. Improving
proxy cache performance by domain-behavior
classification and on-demand caching. Asia J. Inform.
Technol., 7: 100-108.

Hendrantoro, G. and A. Affandi, 2015. Early result from
adaptive combination of LRU, LFU and FIFO to
improve cache server performance in
telecommumcation network. Proceedings of the
International Seminar on Intelligent Technology and
its Applications (ISITIA), May 20-21, 2015, IEEE,
Surabaya, Indonesia 1sBN:978-1-4799-7710-9, pp:
429-432,

Jacob, B., S. Ng and D. Wang, 2010. Memory Systems:
Cache, DRAM, Disk. Morgan Kaufmann Publishers,
Burlington, Massachusetts, TJSA. 1sB: 978-0-12-
379751-3, Pages: 955.

i, M., Q. Care and AF. Molisch, 2015, The
throughput-outage tradeoft of wireless one-hop
caching networks. TEEE. Trans. Inf. Theory, 61:
6833-6859.

Lee, D. and K.J. Kim, 2010. A study on improving web
cache server performance using delayed caching.
Proceedings of the Intemational Conference on
Information Science and Applications (ICTSA), April
21-23, 2010, IEEE, Seoul, South Korea
1sBN:978-1-4244-5942-1, pp: 1-5.

Lerjani, M. and M.R. Hashemi, 2014. Tree-based scheme
for reducing shared cache miss rate leveraging
regional, statistical and temporal similarities. IET.
Comput. Digital Tech., 8: 30-48.

Lim, K., Y. Bang, J. Sung and J K. K. Rhee, 2014. Jomt
optimization of cache server deployment and request
routing with cooperative content replication.

Proceedings of the IEEE International Conference on

Communications (ICC), Tune 10-14, 2014, TEEE,

Sydney, New South Wales, Australia
1sBN:978-1-4799-2003-7, pp: 1790-1795.

Liu, Z., K. Zheng and B. L, 2007. Hybrid
cache architecture for high-speed packet
processing. TET. Comput. Digital Tech., 1:
105-112.

Meira, W. Ir., E. Fonseca, C. Murla and V. Almeida, 1998.
Analyzing performance of cache server hierarchies.
Proceedings of the 18th International Conference
Chilean Society Symposium Society, (ICCSSS™98),
IEEE Catalog, pp: 113-121.

Nakamura , H., M. Kondo, T. Ohneda, M. Fujita and
S. Chiba et al., 2002, Architecture and compiler
co-optimization for high performance computing.
Proceedings of the International Workshop on
Innovative Architecture for Future Generation
High-Performance Processors and Systems, JTanuary
11,2002, IEEE, Big Island, Hawan, USA. 1sBN:0-7695-
1635-1, pp: 50-56.

9019

J. Eng. Applied Sci., 12 (Special Issue 10): 9013-9020, 2017

Shim, T., P. Scheuermann and R. Vingralek, 1999. Proxy
cache algorithms: Design, implementation and
performance. IEEE. Trans. Knowl Data Eng., 11:
549-562,

Stallings, W., 2000. Computer Organization and
Architecture: Designing for Performance. 8th Edn.,
Pearson Education, India 1s BN:978-81-317-3245-8,
Pages: 781.

Tanwir, G. Hendrantoro and A. Affandi, 2017.
Combination of FIFO-LRU cache replacement
algorithms on proxy serverto improve speed of
response to object requests from clients. ARPN. T.
Eng. Appl. Sci., 12: 710-715.

9020

Vladimir, N.S,, P.V. Andrey and C.G. Roman, 2017.
Containerized mikroservice architecture performance
mcreasing by using subsystem and
multithreaded application server. J. Eng. Appl. Sci.,
12: 1250-1253.

Wang, B., 8. Sen, M. Adler and D. Towsley, 2004
Optimal proxy cache allocation for efficient streaming
media distribution. IEEE. Trans. Multimedia, 6:
366-374.

Zhang, Q., 7. Xiang, W. Zhu and I.. Gao, 2004. Cost-based
cache replacement and server selection for
multimedia proxy across wireless Internet. IEEE.
Trans. Multimedia, 6: 587-598.

cache

	9013-9020 - Copy_Page_1
	9013-9020 - Copy_Page_2
	9013-9020 - Copy_Page_3
	9013-9020 - Copy_Page_4
	9013-9020 - Copy_Page_5
	9013-9020 - Copy_Page_6
	9013-9020 - Copy_Page_7
	9013-9020 - Copy_Page_8

